European Sociological Association RN26 Mid-term Conference 2022 7-8 October 2022, Berlin, Germany

Unequal Effects of Pension Reforms and the Moderating Role of Institutions: An Empirical Investigation

Kun Lee

DPhil Candidate in Social Policy

Department of Social Policy & Intervention

University of Oxford

Extending Working lives & Social Inequalities

- Pension reforms to extend working lives since the 1990s
 - Population ageing, fiscal pressures: "averting the old-age crisis" (World Bank, 1994)
 - Social inclusion & well-being of older adults through active ageing
- Rising social inequality among older people
 - Privilege of high-skilled (male) workers?
 - Not everyone can work longer (health, skills, family responsibilities)
 - Some people are forced to work longer (limited retirement income)

Why is it a problem?

- Social inclusion & well-being through active ageing
 - But older adults take up undesired jobs to avoid poverty?
 - Lower-educated workers: high risk of job loss & precarious work (Radl, 2013; Raymo et al. 2011; Lain et al. 2019)
- Fiscal sustainability at the expense of intra-generational fairness?
 - Low-educated workers: earlier LM entry, shorter retirement period
- Issue of social sustainability if socially disadvantaged older adults are mainly affected by pension reforms & work longer involuntarily

Institutional Approaches & Pension Reforms

- Reversal of early retirement: push-pull-retention factors (Ebbinghaus, 2006)
- Retrenchment of public pensions & other welfare benefits
 - Raising standard pension age & reducing early retirement pensions
 - Tightening up contribution-benefit link -> need longer contribution
 - Changing benefit rules (final → average salary), index formulae (wage growth → inflation), introducing sustainability factor
 - Privatisation & multi-pillarisation: introducing voluntary, individual schemes, PAYG to funded, DB to DC (occupational pensions)
 - Cutback of disability pensions & long-term unemployment benefits

Unequal Effects of Pension Reforms

- Public pension cuts may universally affect older adults with diverse SES, but...
- High-SES: financial motivations to work longer may be affected but they are at low risk of poverty & have autonomy
- Low-SES: reductions in pension income may increase the risk of poverty after retirement → more financial necessities, chance of involuntary work

- Question 1: What has been the heterogeneous effects of pension reforms on older people's employment?
 - Level of education / gender-specific effects
 - If low-educated/female workers' employment was more affected → more likely to be associated with involuntary postponement of retirement

Moderating Role of Institutions (1)

- Redistributive structure of public (& mandatory private) pensions
 - Beveridgean (basic security) vs Bismarckian (status maintenance)
 - Reflects the tradition & redistributive orientation of public pensions
 - Beveridgean models: focus on minimum income or social assistance for socially disadvantaged older adults? (thus less impact?)
 - 'Paradox of redistribution' (Korpi & Palme, 1998): earnings-related systems would still better protect low-educated workers?

Moderating Role of Institutions (2)

- Labour Market Dualization: insider-outsider divides
 - not only in employment relations (wage/job security) but also access to welfare & political representation
 - High level of dualization: welfare state often reproduce/exacerbate inequalities in the labour market
- Dualization within the older age group?
 - More chances of precarious work among 'outsider' older workers
 - Access to alternative welfare benefits may be limited
- Role of unions: centralized union structures matter

- Question 2: How do the effects of pension reforms differ by institutional characteristics across countries?
 - Role of redistributive orientation of pension institutions & union structures (labour market dualism)

Data & Variables

- Time-series cross-sectional data: 21 countries, 1995-2017 (mostly OECD data)
 - Countries: 20 Europe (Eurostat EU-LFS) + USA (CPS-IPUMS)
- DV: Group-specific employment rate, age 55-64
 - Education: Low/Mid/High (ISCED 0-2/3-4/5-8)
 - Gender-specific rates (f/m)
- Estimand: Impact of Pension Spending, % of GDP (Public/Mandatory Private)
 - Aggregate measure of policy effort (generosity & coverage & complex rules)
- Pension institutions: Replacement rate ratio (0.5* av. salary) / (1.5*av. salary)
- Labour market dualization: Union (Collective Bargaining) Centralization

Challenge to Identification

- Challenge: claiming causality with non-experimental (observational) study
 - Isolating employment changes "caused by" pension reforms very important!
 - Otherwise interpreting voluntary/involuntary extension does not make sense!
 - Endogeneity: confounding factors (omitted variables bias), reverse causality
 - Possibility of merely spurious (mechanical) correlation in time-series data
 - Need a lot of caution for causal interpretation, but let's try our best
- Covariates: share of the older population, HLE, incapacity benefit spending, unemployment/out-of-work benefit spending, unempl. rates, output gap, logGDPpc, government debt

Modelling Strategy 1: Error Correction Model

- Error correction model (Engle-Granger method)
 - Assumes a long-run equilibrium relationship exists between X & Y
 - Regress ΔY on ΔX : avoids spurious correlation from unit roots
 - Model short-term changes with deviations from long-run equilibrium $(Y_{t-1} \beta X_{t-1})$
 - Can use both levels & change information (unlike fixed-effect models!)

$$\begin{split} \text{ECM 1} \qquad & \Delta \textit{Emp}_{it} = \alpha \textit{Emp}_{i,t-1} + \beta_{p1} (\Delta \textit{PenExp}_{it} \cdot \textit{Edu}_i) + \beta_{p2} \big(\textit{PenExp}_{i,t-1} \cdot \textit{Edu}_i \big) \\ & + \beta_{x1} \Delta X_{it} + \beta_{x2} X_{i,t-1} + \varepsilon_{it} \\ \Delta \textit{Emp}_{it} = \alpha \textit{Emp}_{i,t-1} + \beta_{p11} \big(\Delta \textit{Institution}_{it} \cdot \Delta \textit{PenExp}_{it} \cdot \textit{Edu}_i \big) \\ & + \beta_{p12} \big(\Delta \textit{PenExp}_{it} \cdot \textit{Edu}_i \big) + \beta_{p13} \big(\Delta \textit{Institution}_{it} \cdot \textit{Edu}_i \big) \\ + \beta_{p21} \big(\textit{Institution}_{i,t-1} \cdot \textit{PenExp}_{i,t-1} \cdot \textit{Edu}_i \big) \\ & + \beta_{p22} \big(\textit{PenExp}_{i,t-1} \cdot \textit{Edu}_i \big) + \beta_{p23} \big(\textit{Institution}_{i,t-1} \cdot \textit{Edu}_i \big) \\ & + \beta_{x1} \Delta X_{it} + \beta_{x2} X_{i,t-1} + \varepsilon_{it} \end{split}$$

Modelling Strategy 2: System GMM

- System GMM estimation (Blundell & Bond, 1998)
 - First-differencing: remove time-invariant heterogeneities (cf. fixed effects)
 - Use lagged levels and differences as instruments for endogenous variables: addresses remaining time-varying heterogeneities (also possibility of reverse causality)
 - Small-sample bias not so much a problem (Hayakawa, 2007)

GMM 1
$$\Delta Emp_{it} = \alpha \Delta Emp_{i,t-1} + \beta_{p}(\Delta PenExp_{it} \cdot Edu_{i}) + \beta_{x} \Delta X_{it} + \Delta \gamma_{t} + \Delta \varepsilon_{it}$$

$$\Delta Emp_{it} = \alpha \Delta Emp_{i,t-1} + \beta_{p1}(\Delta PenExp_{it} \cdot \Delta Institution_{it} \cdot Edu_{i})$$

$$+ \beta_{p2}(\Delta PenExp_{it} \cdot Edu_{i}) + \beta_{p3}(\Delta Institution_{it} \cdot Edu_{i})$$

$$+ \beta_{x} \Delta X_{it} + \Delta \gamma_{t} + \Delta \varepsilon_{it}$$

Table 1. Effects of Pension Spending on Old-Age Employment Rates

DV: ΔEmp _t	All persons, age 55-64		Male, age 55-64		Female, age 55-64		
	ECM	GMM	ECM	GMM	ECM	GMM	
Emp _{t-1}	-0.0541*** (-9.46)		-0.0705*** (-6.64)		-0.0573*** (-6.56)		
ΔEmp_{t-1}		0.9363*** (78.22)		0.8693*** (38.77)		0.9250*** (53.06)	
HighEdu×ΔPenExp $_{t}$	-1.1455*** (-4.15)	-0.0821** (-3.01)	-0.7888* (-2.13)	-0.1039 ⁺ (-1.80)	-1.5102*** (-4.14)	-0.0832* (-2.12)	
HighEdu×PenExp _{t-1}	-0.0506* (-2.00)		-0.0659 ⁺ (-1.78)		-0.0538 (-1.5489)		
$MidEdu \times \Delta PenExp_t$	-0.9373*** (-3.67)	-0.1597*** (-4.82)	-1.0750** (-2.80)	-0.2830*** (-4.14)	-0.8082*** (-3.50)	-0.1814*** (-3.43)	
MidEdu×PenExp _{t-1}	-0.1145*** (-4.46)		-0.1471*** (-3.51)		-0.1316*** (-3.76)		
$LowEdu \times \Delta PenExp_t$	-0.6008* (-2.10)	-0.2678*** (-6.26)	-0.3513 (-0.74)	-0.4470*** (-5.55)	-0.8268** (-3.26)	-0.3150*** (-4.60)	
LowEdu×PenExp _{t-1}	-0.2161*** (-6.82)		-0.2582*** (-5.17)		-0.2447*** (-5.59)		
Long-run Effects							
HighEdu×PenExp	<mark>-0.9361</mark>	<mark>-1.2878</mark>	<mark>-0.9340</mark>	<mark>-0.7949</mark>	<mark>-0.9387</mark>	-1.1089	
MidEdu×PenExp	<mark>-2.1188</mark>	<mark>-2.5061</mark>	<mark>-2.0855</mark>	<mark>-2.1655</mark>	<mark>-2.2949</mark>	<mark>-2.4190</mark>	
LowEdu×PenExp	<mark>-3.9973</mark>	<mark>-4.2027</mark>	<mark>-3.6613</mark>	<mark>-3.4210</mark>	<mark>-4.2681</mark>	<mark>-4.1995</mark>	
Adj. R ²	0.1248	0000	0.1730		0.0904		
Sargan p-value		0.7256		1.000		1.000	
N×T	2,621	2,898	1,314	1,449	1,307	1,449	

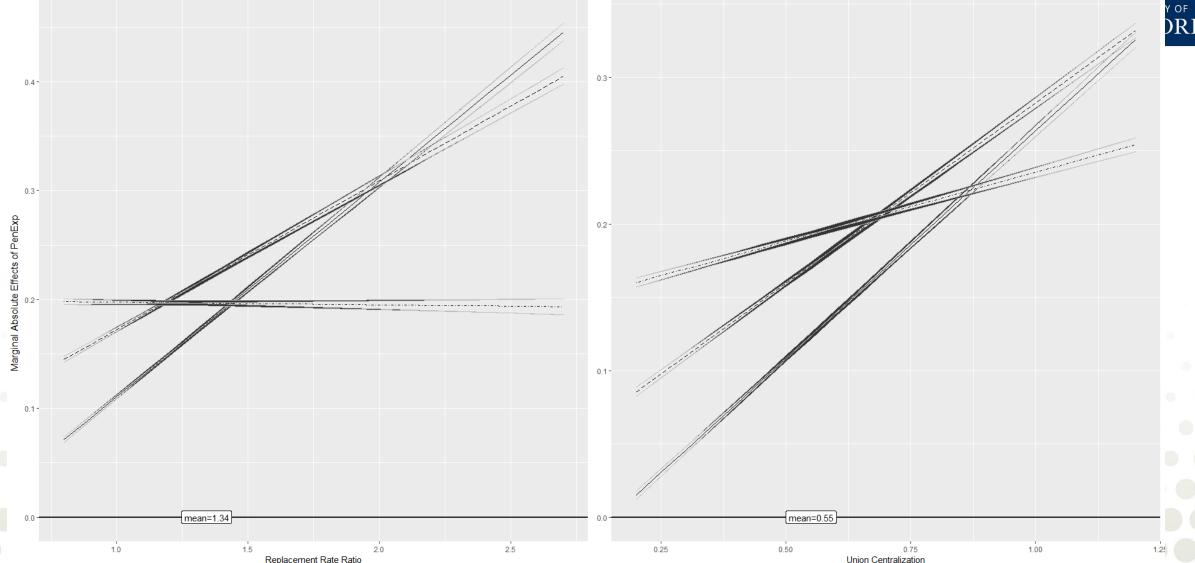
Note: p < 0.1, p < 0.05, p < 0.01, p < 0.01, p < 0.001; **t-statistics** (ECM) or **z-statistics** (GMM) in parentheses.

Table 1. Moderating Effects of Replacement Rate Ratios

DV: Δ <i>Emp</i> _t	All persons, age 55-64		Male, age 55-64		Female, age 55-64	
	ECM	GMM	ECM	GMM	ECM	GMM
Emp _{t-1}	-0.0609***		-0.0784***		-0.0723***	
	(-9.41)		(-6.76)		(-6.77)	
ΔEmp_{t-1}		0.9308***		0.8561***		0.9112***
		(72.72)		(36.32)		(51.29)
$HighEdu \times \Delta RRR_t \times$	-2.7026	-0.1971***	-4.0082	-0.2237*	-2.1262	-0.2722**
$\Delta PenExp_t$	(-1.18)	(-3.37)	(-0.97)	(-2.11)	(-0.61)	(-3.12)
$HighEdu \times RRR_{t-1} \times$	-0.1536***		-0.1079 ⁺		-0.2042**	
PenExp _{t-1}	(-3.31)		(-1.79)		(-2.80)	
$MidEdu \times \Delta RRR_t \times$	-1.4925	-0.1369**	0.0334	-0.1588	-3.5346	-0.1005
$\Delta PenExp_t$	(-0.61)	(-2.73)	(0.01)	(-1.43)	(-1.54)	(-1.42)
$MidEdu \times RRR_{t-1} \times$	-0.1220**		-0.1261 ⁺		-0.0817	
PenExp _{t-1}	(-2.64)		(-1.87)		(-1.23)	
$LowEdu \times \Delta RRR_t \times$	-1.3953	0.0024	-2.7068	-0.0077	0.1194	0.1001
$\Delta PenExp_t$	(-0.50)	(0.04)	(-1.04)	(-0.06)	(0.04)	(1.27)
$LowEdu \times RRR_{t-1} \times$	0.0090		-0.0226		-0.0226	
PenExp _{t-1}	(0.16)		(-0.29)		(1.44)	

Table 1. Moderating Effects of Collective Bargaining Centralization

DV: ΔEmp _t	All persons, age 55-64		Male, age 55-64		Female, age 55-64	
	ECM	GMM	ECM	GMM	ECM	GMM
Emp _{t-1}	-0.0634***		-0.0818***		-0.0761***	
	(-9.62)		(-6.98)		(-6.28)	
ΔEmp_{t-1}		0.9314***		0.8565***		0.8934***
		(71.85)		(35.32)		(41.91)
$HighEdu \times \Delta Cent_t \times$	-3.2666	-0.3106***	0.8814	-0.3300**	-7.6069**	-0.2313*
$\Delta PenExp_t$	(-0.67)	(-4.94)	(0.20)	(-2.78)	(-3.04)	(-2.36)
$HighEdu \times Cent_{t-1} \times$	-0.2687***		-0.2113*		-0.2203**	
PenExp _{t-1}	(-4.88)		(-2.58)		(-2.87)	
$MidEdu \times \Delta Cent_t \times$	1.9005	-0.2463***	-0.5520	-0.1894	3.9506	-0.1238
$\Delta PenExp_t$	(0.63)	(-4.43)	(-0.13)	(-1.41)	(1.47)	(-1.16)
$MidEdu \times Cent_{t-1} \times$	-0.2254***		-0.1309		-0.1788*	
PenExp _{t-1}	(-3.91)		(-1.32)		(-2.39)	
$LowEdu \times \Delta Cent_t \times$	0.3513	-0.0940	-1.8902	0.0394	1.9394	0.1697
$\Delta PenExp_t$	(0.07)	(-1.62)	(-0.24)	(0.27)	(0.58)	(1.18)
$LowEdu \times Cent_{t-1} \times$	-0.0821		-0.0058		0.0460	
PenExp _{t-1}	(-1.40)		(-0.06)		(0.54)	



Moderating Role of Institutions (GMM)

Key Findings

- The lower the education level, the larger the impact on employment rates
 - Similar patterns in gender-specific analysis but larger long-run effect on female workers
 - Pension cuts may have increased involuntary extensions?
- The relationship is reversed in more 'Beveridgean' pension systems & centralized union structure
 - In Bismarckian systems, low-educated group's employment no less affected than in Beveridgean systems but high-educated group's employment much less affected
 - 'Paradox of redistribution' does not hold in the retrenchment phase
 - Centralized union structure & less dualization: low-skilled workers' income may be relatively more protected

Limitations

- Not causal (but hopefully small omitted variables bias)
- Moderating effects of institutions: mere correlational further interpretations are theory-based
- Limitations of using macro-level data: individual motivations for early/late retirement, income situation, socio-economic characteristics, occupations..
 - Interpretations may be an overstatement
 - Directions for further research!

Comments Q&A

Email: kun.lee@spi.ox.ac.uk